GENERALISING GROUP ALGEBRAS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalising Group Algebras

We generalise group algebras to other algebraic objects with bounded Hilbert space representation theory the generalised group algebras are called “host” algebras. The main property of a host algebra, is that its representation theory should be isomorphic (in the sense of the Gelfand–Raikov theorem) to a specified subset of representations of the algebraic object. Here we obtain both existence ...

متن کامل

AMENABILITY OF VECTOR VALUED GROUP ALGEBRAS

The purpose of this article is to develop the notions of amenabilityfor vector valued group algebras. We prove that L1(G, A) is approximatelyweakly amenable where A is a unital separable Banach algebra. We givenecessary and sufficient conditions for the existence of a left invariant meanon L∞(G, A∗), LUC(G, A∗), WAP(G, A∗) and C0(G, A∗).

متن کامل

real group algebras

in this paper we initiate the study of real group algebras and investigate some of its aspects.let l1 (g) be a group algebra of a locally compact group g,τ :g →g be a group homeomorphismsuch that τ 2 =τοτ = 1, the identity map, and lp (g,τ ) = { f ∈ lp (g) : fοτ = f } ( p ≥ 1) . in thispaper, among other results, we clarify the structure of lp (g,τ ) and characterize amenability ofl1 (g,τ ) and...

متن کامل

Generalising Conservativity

A constraint on functions from sets and relations to sets is studied. This constraint is a generalisation of the constraint of conservativity known from the study of generalised quantifiers in natural languages. It is suggested that this generalised constraint constitutes a semantic universal.

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2005

ISSN: 0024-6107,1469-7750

DOI: 10.1112/s0024610705007003